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HEAT TRANSFER IN LAMINAR FLOW BETWEEN PARALLEL
POROUS PLATES
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Abstract—The laminar incompressible flow in a two-dimensional channel with two equally porous
walls has been discussed previously by the author [1, 2]. In this paper the heat-transfer problem of a
discontinuous change in wall temperature is solved. It is found that for small suction Reynolds numbers
the limiting Nusselt number Nu, increases linearly with the suction Reynolds number. In particular
injection reduces whereas suction increases the Nusselt number.
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NOMENCLATURE
stream function;
channel width;
distances measured parallel and per-
pendicular to the channel walls
respectively;
velocity of fluid at x = 0;
constant velocity of fluid at the walli;
== y/h, non-dimensional distance
perpendicular to the channel walls;
function defined in equation (1);
coeflicient of kinematic viscosity;
= Vh/v, suction Reynolds number;
density;
heat capacity at constant pressure;
thermal conductivity;
temperature;
= X, position where temperature of
walls changes;
temperature of walls for x << x,,
X > X, respectively;

T—T: . .
=T _ T non-dimensional tem-
o — 41
perature;
X — Xop . . .
= non-dimensional  dis-

tance along the channel;

= Uh/v, channel Reynolds number;
= uCp/K, Prandt]l number;
eigenvalues;

eigenfunctions;

eigenfunctions for R = 0,

B®, B, change in eigenfunctions when
R=£0;

p(n), g(n), functions defined by equation (15);

Ky, constants given by equation (17);

h, heat-transfer coefficient ;

Nu, Nusselt number;

Nuc, the limiting Nusselt number given
by ¢ large;

Om, mean temperature;

Cns constants defined by equation (25);

a, B,y, 8, constants given in equation (30).

1. INTRODUCTION

THE LAMINAR incompressible flow in a two-
dimensional channel with two equally porous
walls has been discussed by the author [1, 2]
elsewhere. (References to other papers are con-
tained in reference [1]). The flow through porous
channels is of interest in certain heat-transfer
problems. For instance, when hot fluid flows
down the channel, problems which arise from
overheating of the walls may be overcome by the
injection of fluid through the walls. Methods of
decreasing rates of heat transfer may become
important in combustion chambers, exhaust
nozzles and porous walled flow reactors. In the
present paper the work of the author [1] is ex-
tended to include heat transfer. The problem
will be treated as a forced convection problem
so that, by assuming that the viscosity is inde-
pendent of the temperature, the equation of
motion can be solved independently to obtain
the velocity distribution,
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The possibility of obtaining a solution for the
flow between parallel plates with equally porous
walls was first observed by Berman [3]. Let x
and y be distances measured parallel and per-
pendicular to the channel walls respectively and
let # and v be the velocity components in the
directions of x and y increasing respectively.
Then Berman showed that the Navier-Stokes
equations and the equation of continuity can be
satisfied by assuming a stream function of the
form

= U — VAl fG), n=yih (D)

where 24 is the channel width, V is the constant
velocity of suction at the wall and U is the velo-
city of the fluid in the x direction at x == 0. The
velocity components are given by

|
= U= VA[@) o=V Q)

where the prime ' denotes differentiation with

respect to n. The function f(n) satisfies the non- -

linear differential equation

SR ) =k )

where R = Vh/v is called the suction Reynolds
number and k is a constant. If » = 0 is chosen at
the centre of the channel so that the walls are
given by 7 = 41 the boundary conditions on
equation (3) can be taken to be

SO =0 [0 =0)
=1 f=0]

The condition f(1) = 1 implies that R > 0 for
suction at both walls while R << 0 for blowing
at both walls.

The series solution of equation (3) subject to
conditions (4) for small R is

4)

3 1 R ‘
St = (5 U n3) +5g0 (1" 3P 29)
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and k is given by
p 3 81 R 468
CT T T as N T 35770

In Terrill {1} the solution for f(u) given in
equation (5) was found to be accurate within the
range |R| << 7. The first term of solution (5) is
the parabolic velocity profile for Jaminar flow
through impermeable parallel plates. The solu-
tion of equation (3) for large positive R has been
discussed by Terrill [1] and for large negative R
by Yuan [4] and Terrill [2]. However, for a heat-
transfer problem the case of small injection or
suction rate appears to be of most interest.

Numerous heat-transfer problems for laminar
flow between parallel impermeable plates have
been considered by various authors. Prins,
Mulder and Schenk {5] solved the problem of a
fluid experiencing a discontinuous change of wall
temperature assuming walls of infinite thermal
conductivity; van der Does de Bye and Schenk
[6] extended this solution to plates of finite con-
ductivity. The temperature distribution when the
walls are at different temperatures has been
considered by Yih and Cermack [7] and by
Schenk and Beckers [8]. Cess and Schaffer have
considered both the cases of symmetrically pre-
scribed heat flux {9] and unsymmetrically
prescribed heat flux {10].

In principle it appears that any of these prob-
lems could be extended to laminar flow through
a channel with porous walls; in the present
paper only the case of fluid experiencing a dis-
continuous change in wall temperature where
the walls are of infinite thermal conductivity
will be investigated.

Let the temperature of the walls and the fluid
be 7 =T, for x < x, and let T = T, be the
constant temperature of the walls for x = x,.
The energy equation for incompressible flow
neglecting viscous dissipation is

R2 + O(R3).

¢ ¢ e AT
P Cou f + v ((;) ~ K Py (@2) (6)

where C,, is the specific heat at constant pressure
and K is the thermal conductivity. Introducing
a non-dimensional temperature
T-—T11
g oo
T — T

cix2
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and neglecting the longitudinal heat conduction
we can rewrite the equation as

0 o0 K @0

Yot TV T o Coh o )

where ¢ = (x — xo)/h. If the velocity com-

ponents from (2) are substituted into equation (7)
then

R @ R o0 1 o2
(1 — R+ E)f () of + g S(0) om = PrR* on?
®

where R* = (Uh/v) is the channel Reynolds
number and Pr = (uCyp/K) is the Prandtl
number.

The boundary conditions on 8 are

6=0 aty = 41
f=1 at¢{=0

If the plates are impermeable then R = 0 and
equations (8) and boundary conditions (9) re-
duce to the problem considered by Prins,
Mulder and Schenk [5].

€)

2. SOLUTION

To separate the variables we make the substi-
tution 8(¢, n) = A(£)B(n) in equation (8) which

yields
R NA4E 24
(- f) a@ = aerr 10
and
B7(n) — RPrf(n) B'(n) +3 2 2S () B(n) =0
(11)
where A, is a constant.
Equation (10) can be integrated to give
R \2A,3RPr
4@ = (1= u t) (12)

It should be noted that as R - 0,
2)2
A(€) > exp [ 3 R*j’; fJ

It is worth noting that Pr only occurs in the
non-dimensional product RPr; this can be re-
garded as a mass-transfer Péclet number,
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The solution of the heat-transfer equation is

22,%/3RPr
0= > Kl ) B (13

where K, are constants to be determined from
the boundary condition at ¢ =0 and where
Bu(n) are the eigenfunctions of (11) correspond-
ing to the eigenvalues A, for which solutions of
(11) can satisfy the boundary conditions § = 0
atn = 4 1. There will be an infinite set of eigen-
values Ay, A1, Ag, ... and corresponding eigen-
functions Be(n), Bi(n), Ba(y), . . ..

Before we discuss the eigenvalues it is worth-
while considering equation (11) in more detail
to obtain formulae for the constants K, and for
the Nusselt number.

Equation (11) may be rewritten

d ,
dn {p(n) B,(m)} + AZq() Ba(n) =0  (14)

where
p(n) = exp {— RPr {:f(n) dn}

2

and g() = 5 /') (o). (19)
For boundary conditions Bn(4+1) =0 it can
easily be shown that any two eigenfunctions
Bu(m) and By(n), corresponding to different
eigenvalues A, and A, respectively, are ortho-
gonal in the range (—1, 1) with respect to the
weight function ¢(y), that is

1400 Bu) Bala) dn =0, m £ n (16

Substituting one of the boundary conditions (9)
6 =1 at £ = 0 into the solution (13) we obtain

> Kn Bn(’?) = 1.

Hence using the relationship (9), we find the
constants K, to be given by

j q(n) Bn(n)dy
Ky =",

_qu(n) Bi(m)dny

(17
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From the differential equation (14) it can be
shown that

1

By
Aﬁjq@) By(y) dy = — 2 [Pﬁ?) y ‘('n')J -

?}77
e
(18)
and
i
y qu B2y dy
g
| @Ba(n) 9Baln) ’
S LRl ()
s0 that
K R (20)

T X [{0Ba(n) )0 My

Thus if the eigenvalues and eigenfunctions of
equation (11} are found then the complete solu-
tion for 6 can be obtained from equations (13)
and (20).

The Nusselt number based on the channel
width is given by

Nt o Z_i;k; 2 job
u - K - em (é)n )/:,".}

where h; is the heat-transfer coefficient and 0y,
the mean non-dimensional temperature is given
by

@n

1
§ Ou dyy
{}m = f‘
{ udy
o1

(22)

Substitution of 6 from (13) and « from (2) gives

-~y R \2A/3RPr
O = Z Cn (I - 'k}: f) (23)
where
1
Ky Ba(n) f(m) d
Fa— j l,lﬁ(n%f_(n)_v . (24)

-1

Integration of equation (11} gives

1

2 (0Ba]c
JBn(n)f ‘(n) dn = — @j\(g +/I(;1£F)

-1
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5o that
OB
en o ({ ") L KalG A7 r RPRL23)
N /=1
Hence the Nusselt number s
Nu -
K\ ) ( R N 2"#‘:’;””"'.(‘(}Bn(‘?’})\
) K ! . . PR A4
A ( R \2A,%3RPr
D> oenll - ¢
2ol ped)

{26)

where ¢, are given by {25) and K, by {20).
Finally sufficiently far downstream only the

first term will remain in each of the series expan-

sionst so that the limiting Nusselt number is

Nug == 2 (3 22 + RPr)

When R 0 the above solution reduces to the
solution given by Prins, Mulder and Schenk [3].
it should be noted that the Nusselt number given
in this paper is based in the channel width
whereas Prins, Mulder and Schenk used a
Nusselt number based on half the channel width;
hence the appearance of the factor 2 in equations
(21), (26) and (27).

In the above solution no restrictions have been
placed on the function f{n) and therefore, pro-
vided longitudinal heat conduction is negligible,
there is no reason why the solutions given by the
author {l, 2] for various ranges of suction
Reynolds number could not be substituted and
the resulting heat-transfer equation solved. For
practical purposes it seems reasonable to suppose
that R is small and so only the solution for small
R will be discussed more fully.

t For this statement to be true we have to show that
[ — (R/R*) £]2/3RPr can be made as small as we require
by taking ¢ sufficiently large. When R is small it has al-
ready been seen that [l -~ (R/R*) ¢]#/3RPr behaves like
exp [ - (2¢/3R*Pr)] which clearly can be made as small
as we desire by choosing ¢ sufficiently large. If R is negative
then 1 — (R/R*) ¢ is greater than one and, by choosing
¢ sufficiently large, can be made as large as we require;
since (2/3RPr) is negative [I — (R/R*) ¢]¥/3EPr can be
made as small as we require for any negative value of R.
If R is positive then [1 2> 1 - (R/R*) £ > 0}, the lower
bound being the condition for fluid to remain in the tube.
Thus [1 — (R/R*) ¢] is small far downstream and since
(2/3RPr) is positive [1 — (R/R*) £12/38F7 can be made as
small as we require by choosing ¢ sufficiently large.
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3. THE SOLUTION FOR SMALL SUCTION
REYNOLDS NUMBERS
To obtain a complete solution of the problem
the eigenvalues and eigenfunctions of equation
(11) subject to the boundary conditions

B(+1) =0

are required. The solution for R =0 has
been given by Prins, Mulder and Schenk and
their results for the first three eigenvalues A,
A1 and Ag and the corresponding eigenfunctions

B®(), B®(x) and BP(y) are given in
Table 1 and Table 2 respectively.
B Table 1. Eigenvalues for R = 0 -
8B, 8B,0
" An ( 8dn )7,=1 ( on )7,:1 Kn e
0 16816 —0990 —1-434 +1:201 0914
1 56699 4121 +3-86 —0-292 0-053
2 96678 —1-35 —59 +0-153 0015

For a flow with porous walls only the change
in the first and most important eigenvalue 2,
will be discussed. The second and third eigen-
values for R = 0 will be included to show the
magnitude of the succeeding terms of the series

Table 2. Eigenfunctions for R = 0

7 Bo' ()
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and also because the effect of suction can be
compared with these terms. The equation for A,
is

B(n) — RPrf(n) B(n) + § N2/"(n) Bo(n) = 0
(28)
where f(3) is given by equation (5). If we write
A2 = 2-828 + aRPr + BR2Pr?
+ yR3Pr® ++ 3R - O(R2, R2Pr, R*Prd)
and
Bo() = BO(y) + BORPr
+ B R2Pr? 4. BGi) R3Py3
+B™MR + ... (29)
and substitute into equation (28) then we can
show that

a

8:

—0750 B =0065
00076 y = 0(0-001)} (30)

In equation (30) and in the following results
0(x) means that the numerical value is close to
the value x. The function B{®(y) has been
tabulated in Table 2 and the functions B®(x)
and Bid(n) are tabulated in Table 3. The func-
tions Bid(n) and B{(y) are only significant
in the fourth decimal place and have, therefore,
been omitted.

The non-dimensional temperature 8 is given
by equation (13) which requires the value of K,

B () B:(0(n) given by equation (20). Now
0 1-0000 1-0000 1-0000 9Bo(m)
01 0-9859 0-8437 0-5686 [ ang |, = — 0990 — 018 RPr
02 0-9443 0-4261 —03512 K
0-3 0-8772 —0-1206 —0-9842 - 001 R2PI‘2 + 0-002 R + PP (31)
0-4 0-7876 —0:6346 —0-8414 so that
05 0-6793 —0-9833 —0-0750
06 0-5566 —1-1014 +0-7539 K, = 1201 — 0-06 RPr =+ 0-020 R2Pr2
07 0-4238 —0-9974 +1-1669 ? ™ RPr
08 0-2848 —07311 +1-0500 +0001R+... (32)
09 0-1429 —0-3788 +0-5813 . . L.
10 0-0000 0-0000 0-0000 Hence the non-dimensional temperature distri-
bution is
Table 3. The functions B,'"(n) and B,''"(x)
7 0 01 02 03 04 05 06 07 08 09 10
B, (n) 0 0-0037 0-0141 0-0292 0-0460 0-0612 00710 0-0726 0-0634 00423 0
B, () 0 —00003 —0-0011 —00018 -—00027 —0-0019 —0:0006 00013 0-0029 00029 0
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§ == [1-201 - 0-06 RPr <+ 0-020 R%Pr*
-+ 0-001 R 4 ...][B"
+ RPr B - R2Pr2 B i

: R\ 23, 23RPY

» L (33)
— 0292 By(n) (‘z }f* g.) A
+ 0153 ('1 o ]f* é)mmmr
e Bg(n)%} - ' )
where
X2 = 2:828 — 0-750 RPr
+ 0-065 R2Pr2 4 0-0076 R + ... (34)

In the second and third eigenfunctions in the
above equations the effect of suction has not
been calculated.

The mean temperature can be obtained from
equations (23) and (25). Now [0B(n)/in]y=1
is given by

B«
[9 ;9-(37)J o — 1434 — 0-39 RPr
N Jy=l
— 0:05 R2Pr2 — 0(0-001) R
50 that

¢o == (:914 - 0-04 RPr

1+ 0025 R2Pr® — 0(0-002) R. (35)
Hence the mean temperature is
B = (0-914 — 0-04 RPr
; \ 27, 2/3RPr
+0025 RPre ) (1 g g)
/ R\ -2L-4%RPT
+ (0-053) (1 — g)
/ R\ -62:3LURPr
4 0015 (1 ~ 5) (36)

where A2 is given in equation (34). If we sub-
stitute the above value for 8, we can obtain the
Nusselt number from equation (26). In parti-

R. M. TERRILL

Table 4. Nusselt number for various RFPr

11

RPr 3} -2 ~1-05 0 05 |

5 2t 29 33 377 43 49 61 76

cular for ¢ sufficiently large the limiting Nusselt
number is given by

Nuts. =377 + RPr - 0-087 R2Pr?

4 0:010 R -+ 0(0-001) R3Prs -+ (37)

Values of the limiting Nusselt number have been
given for various values of RPr in Table 4. In
Terrill [1] the solution for f(») given in equation
(5) was found to be accurate within the range
[R| <27 and in the same way expansion (37)
suggesis that the limiting Nusselt number will

s

be accurate for RPr in the range |RPr| -+ 3.
The Nusselt number increases with increasing
Reynolds number; in particular injection de-
creases Nuo whereas suction increases Nuw. In
Terrill {1] the skin friction was found to increase
with R for small suction Reynolds number and
so it is consistent that the Nusselt number
increases with R,
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Résumé—1’écoulement laminaire incompressible dans une conduite bidimensionnelle avec deux

parois poreuses identiques a été discuté auparavant par 'auteur [1, 2]. Dans et article, le probléme du

transport de chaleur avec une variation discontinue de la température pariétale est résolu. On trouve

que, pour de petits nombres de Reynolds d’aspiration, le nombre de Nusselt limite Nu,, augmente

linéairement avec le nombre de Reynolds d’aspiration. En particulier, P'injection diminue tandis que
I’aspiration augmente le nombre de Nusselt.

Zusammenfassung—Die laminare, inkompressible Strémung in einem zweidimensionalen Kanal mit
zwei gleich porésen Winden ist vor kurzem vom Author diskutiert worden [1, 2]. Hier wird das
Wirmeiibergangsproblem fiir nicht kontinuierliche Anderung der Wandtemperatur gelost. Es
zeigt sich, dass fir kleine Absaug-Reynoldszahlen die Grenz-Nusseltzahl Nu, linear mit der Absaug-
Reynoldszahl zunimmt. Einblasung vermindert die Nusseltzahl wihren Absaugung sie erhoht.

Anporamma—Panee B paforax [1, 2] aBTop paccMATpMBAJ JNAMMHAPHBI HECHKUMaeMBIil

HOTOK B [BYMEPHOM KaHaJle ¢ ZBYMA PABHONOPMCTHIMU CTeHKaMu. B janHo% craThe pemaercs

3a7a4a TemnI000MeHa NP M3MEHEeHMM TeMIIepaTyphl CTeHKM ckaukom. Halimewo, uro must

Mamex uncesd Peitnoabzca orcoca npemenbroe uuciao Hyccembra Huo, nuueiino ysennuu-

BaerTcA ¢ yneaudeHuem uucia Pelinompaca orcoca. HaiifeHo, 4To BIYB yMeHbIIAeT, a OTCOC
yBeqnnuuBaer unciao Hyccexbra.



