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Abstract-The laminar incompressible flow in a two-dimensional channel with two equally porous 
walls has been discussed previously by the author [l, 21. In this paper the heat-transfer problem of a 
discontinuous change in wall temperature is solved. It is found that for small suction Reynolds numbers 
the limitine Nusselt number Nu, increases linearlv with the suction Revnolds number. In uarticular 

injection reduces whereas suction increases the Nusselt number. 

NOMENCLATURE 

stream function; 
channel width; 
distances measured parallel and per- 
pendicular to the channel walls 
respectively; 
velocity of fluid at x = 0; 
constant velocity of fluid at the wall; 
= y/h, non-dimensional distance 
perpendicular to the channel walls; 
function defined in equation (1) ; 
coefficient of kinematic viscosity; 
= Vh/v, suction Reynolds number; 
density ; 
heat capacity at constant pressure; 
thermal conductivity; 
temperature; 
= x0, position where temperature of 
walls changes; 
temperature of walls for x < x0, 
x > x0 respectively; 

Bz), B:", change in eigenfunctions when 
R#O; 

p(7), q(y), functions defined by equation (15); 
K?S, constants given by equation (17); 
hi, heat-transfer coefficient ; 
Nu, Nusselt number; 
N&0, the limiting Nusselt number given 

by 5 large; 
e n, mean temperature; 
cn, constants defined by equation (25); 
a, /3, y, 6, constants given in equation (30). 

1. INTRODUCTION 

T- TI 
-To - TI' 

non-dimensional tem- 

perature ; 
x - XfJ 

h ’ 
non-dimensional dis- 

tance along the channel; 
= UlrJv, channel Reynolds number; 
= p&,/K, Prandtl number; 
eigenvalues; 
eigenfunctions; 
eigenfunctions for R = 0; 

THE LAMINAR incompressible flow in a two- 
dimensional channel with two equally porous 
walls has been discussed by the author [I, 21 
elsewhere. (References to other papers are con- 
tained in reference [l]). The flow through porous 
channels is of interest in certain heat-transfer 
problems. For instance, when hot fluid flows 
down the channel, problems which arise from 
overheating of the walls may be overcome by the 
injection of fluid through the walls. Methods of 
decreasing rates of heat transfer may become 
important in combustion chambers, exhaust 
nozzles and porous walled flow reactors. In the 
present paper the work of the author [l] is ex- 
tended to include heat transfer. The problem 
will be treated as a forced convection problem 
so that, by assuming that the viscosity is inde- 
pendent of the temperature, the equation of 
motion can be solved independently to obtain 
the velocity distribution. 
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The possibility of obtaining a solution for the 
flow between parallel plates with equally porous 
walls was first observed by Berman [3]. Let s 
and y be distances measured parallel and per- 
pendicular to the channel walls respectively and 
let u and v be the velocity components in the 
directions of x and y increasing respectively. 
Then Berman showed that the Navier-Stokes 
equations and the equation of continuity can be 
satisfied by assuming a stream function of the 
form 

$ -= [AU Vx] f(T), 7 ::= y/k (1) 

where 2h is the channel width, V is the constant 
velocity of suction at the wall and U is the velo- 
city of the fluid in the s direction at .Y =-:= 0. The 
velocity components are given by 

(2) 

where the prime ’ denotes differentiation with 
respect to 7. The functionf(T) satisfies the non- 
linear differential equation 

.f”’ + R (f“J __-.fl”) _ k (3) 

where R = Vh/v is called the suction Reynolds 
number and k is a constant. If 17 = 0 is chosen at 
the centre of the channel so that the walls are 
given by q = *:I the boundary conditions on 
equation (3) can be taken to be 

f(0) = 0 .f”(O) = 0 1 

f(1) = I ,f’ (1) := 0 J (4) 

The condition f(1) == 1 implies that R ;> 0 for 
suction at both walls while R < 0 for blowing 
at both walls. 

The series solution of equation (3) subject to 
conditions (4) for small R is 

and k is given by 

Ii = 
81 46X / 

3 + 35 R 35.770 K’ T OCR”). 

In Terrill [l] the solution for .f(~l) given in 
equation (5) was found to be accurate within the 
range 1 RI -: 7. The first term of solution (5) is 
the parabolic velocity profile for laminar flow 
through impermeable parallel plates. The solu- 
tion of equation (3) for large positive R has been 
discussed by Terrill [I] and for large negative R 
by Yuan [4] and Terrill [2]. However, for a heat- 
transfer problem the case of small injection OI 
suction rate appears to be of most interest. 

Numerous heat-transfer problems for laminar 
flow between parallel impermeable plates have 
been considered by various authors. Prim, 
Mulder and Schenk [5] solved the problem of a 
fluid experiencing a discontinuous change of wall 
temperature assuming walls of infinite thermal 
conductivity; van der Does de Bye and Schenk 
[6] extended this solution to plates of finite con- 
ductivity. The temperature distribution when the 
walls are at different temperatures has been 
considered by Yih and Cermack [7] and by 
Schenk and Beckers [8]. Cess and Schaffer have 
considered both the cases of symmetrically prc- 
scribed heat flux [9] and unsymmetrically 
prescribed heat flux [lo]. 

In principle it appears that any of these prob- 
lems could be extended to laminar flow through 
a channel with porous walls; in the present 
paper only the case of fluid experiencing a dis- 
continuous change in wall temperature where 
the walls are of infinite thermal conductivity 
will be investigated. 

Let the temperature of the walls and the Huid 
be T To for x < x0 and let T ~--: TI be the 
constant temperature of the walls for s Y(,. 
The energy equation for incompressible flow 
neglecting viscous dissipation is 

where C, is the specific heat at constant pressure 
and K is the thermal conductivity. Introducing 
a non-dimensional temperature 
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and neglecting the longitudinal heat conduction 
we can rewrite the equation as 

The solution of the heat-transfer equation is 

ae K a28 - Bntd (13) 
at a7 - p c, h a72 \‘I / \ 

where 5 = (x - x,)/h. If the velocity com- where Km are constants to be determined from 

ponents from (2) are substituted into equation (7) the boundary condition at 5 = 0 and where 

then Bn(r)) are the eigenfunctions of (11) correspond- 
ing to the eigenvalues A, for which solutions of 

1 a28 
(1 - j$ h).f’(T) :; + $0) ;; = j+B* @ 

(11) can satisfy the boundary conditions 0 = 0 
at 17 = * 1. There will be an infinite set of eigen- 

(8) 

values ho, h x 

and corresponding eigen- 
functions B&), %;(ij, Bs(v), . . . . 

where R* = (C/h/v) is the channel Reynolds Before we discuss the eigenvalues it is worth- 
number and Pr = (p&/K) is the Prandtl while considering equation (11) in more detail 
number. 

The boundary conditions on 0 are 

e=o atT=*l 
(j z I at[=O i 

If the plates are impermeable then .~ 

to obtain formulae for the constants Kn and for 
the Nusselt number. 

Equation (11) may be rewritten 

(9) d 

R = 0 and 
d; {P(V) B:(T)) + h: 4(17) Bn(?l) = 0 (14) 

equations (8) and boundary conditions (9) re- where 
duce to the problem considered by Prins, 
Mulder and Schenk [5]. 

P(T) = exp I- BPr ff(~) drl > 
0 

2. SOLUTION 

To separate the variables we make the substi- 
tution e([, 7) = A(t)B(?) in equation (8) which 
yields 

WI) - Wftd WI) + : W%) B(T) = 0 

(11) 
where A, is a constant. 

Equation (10) can be integrated to give 

A(() = ( 1 - g E)2*.2’=+ (12) 

and q(T) = z f’(7) I. (15) 

For boundary conditions B& 1) = 0 it can 
easily be shown that any two eigenfunctions 
Bm(7) and B,(y), corresponding to different 
eigenvalues A, and A, respectively, are ortho- 
gonal in the range (- 1, 1) with respect to the 
weight function q(T), that is 

5 q(v) B&) B%(T) dv = 0, m # II. (16) 
-1 

Substituting one of the boundary conditions (9) 
0 = 1 at E = 0 into the solution (13) we obtain 

C & B,(T) = 1. 

It should be noted that as R--f 0, 

A(6) + exp 
[- 2hi 1 l 3R*Pr 

Hence using the relationship (9), we find the 
constants Kn to be given by 

It is worth noting that Pr only occurs in the 
non-dimensional product RPr; this can be re- 
garded as a mass-transfer P&let number. 

i q(y) Bn(rl) drl 
Kn = -i’_-_ _ _ .-.. 

J;q(rl) B:(v) dv ’ 
(17) 
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From the differential equation (14) it can be SO that 
shown that 

(‘O 

Hence the Nusselt number I> 

(18) Nu 

and 

so that 

Thus if the eigenvalues and eigenfunctions of 
equation (I 1) are found then the complete solu- 
tion for B can be obtained from equations (13) 
and (20). 

The Nusselt number based on the channel 
width is given by 

2hk 1 2 

N” -‘= -K 
.:- - 

hn 
(21) 

where hr is the heat-transfer coefficient and 8, 
the mean non-dimensional temperature is given 
by 

GQ 
j’, u dr, 

Substitution of 8 from (13) and u from (2) gives 

Integration of equation (ii) gives 

where cn are given by (25) and Kn by (220). 
Finally sufficiently far downstream only the 

first term will remain in each of the series expan- 
sionst so that the limiting NusseIt number is 

When R--h 0 the above solution reduces to the 
solution given by Bins, Mulder and Schenk f5j. 
tt should be noted that the Nusselt number given 
in this paper is based in the channel width 
whereas R-ins, Mulder and Schenk used a 
Nusselt number based on half the channel width; 
hence the appearance of the factor 2 in equations 
(21), (26) and (27). 

In the above solution no restrictions have been 
placed on the function f(q) and therefore, pro- 
vided longitudinal heat conduction is negligible, 
there is no reason why the solutions given by the 
author [I, 21 for various ranges of suction 
Reynolds number could not be substituted and 
the resulting heat-transfer equation solved. For 
practical purposes it seems reasonable to suppose 
that R is small and so only the solution for small 
R will be discussed more fully. 

(23) 
t For this statement to be true we have to show that 

11 - (R/R*) $La/annr can be made as small as we require 
by taking ~‘s&iciently large. When R is small it has al- 
ready been seen that [I -.- (R/R*) []Pi:JRP* behaves likt 
exp [ (25/3R*Pr)] which clearly can be made as small 
as we desire by ~hoosing~suffi~ientlylarge. If R is negative 

(24) then 1 -- (R/R*) ,$ is greater than one and, by choosing 
t sufficiently large, can be made as large as we require; 
since (213RPr) is negative [I - (R/R*) f]a/sRpr can be 
made as small as werequire for any negative value of R. 
If R is nositive then ii :;s 1 (R/R*) f > 01, the lower 

bound being the condition for fluid to remain in the tube. 
Thus [I - (R/R*) f] is small far downstream and since 
(2/3RPr) is positive [l - (R/R*) .$]Z/aRPr can be made as 
small as we require by choosing E sufficiently large. 
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3. THE SOLUTION FOR SMALL SUCTION 

REYNOLDS NUMBERS 

To obtain a complete solution of the problem 
the eigenvalues and eigenfunctions of equation 
(11) subject to the boundary conditions 

B(&l) = 0 

are required. The solution for R = 0 has 
been given by Prins, Mulder and Schenk and 
their results for the first three eigenvalues ho, 
hi and As and the corresponding eigenfunctions 
B:O’(rl), B:O’(rl) and B$O)(y) are given in 
Table 1 and Table 2 respectively. 

Table 1. Eigenvalues fbr R = 0 

0 1.6816 - 0.990 -1.434 +1.201 0.914 
1 5.6699 +1,21 +3.86 -0.292 0.053 
2 9.6678 -1.35 -5.9 +0153 0.015 

For a flow with porous walls only the change 
in the first and most important eigenvalue A, 
will be discussed. The second and third eigen- 
values for R = 0 will be included to show the 
magnitude of the succeeding terms of the series 

Table 2. Eigenfunctions for R = 0 
P 

7) BP’(?) Bl’O’(7) MO’(q) 

0 1WOO 1.0000 10X)0 
0.1 0.9859 0.8431 0.5686 
0.2 0.9443 @4261 -0.3512 
0.3 0.8772 -0.1206 -0.9842 
0.4 0.7876 -0.6346 -0.8414 
0.5 0.6793 -0.9833 -0.0750 
0.6 0.5566 -1.1014 $0.7539 
0.7 0.4238 -0.9974 +1.1669 
0.8 0.2848 -0.7311 + 1.0500 
0.9 0.1429 -0.3788 +0.5813 
1.0 omOo 00XlO O%!QO 

.____ _ 

and also because the effect of suction can be 
compared with these terms. The equation for A, 
is 

B:‘(V) - JW-(4 B;(T) + 8 YY’(~) 444 = 0 

(28) 
wheref(r]) is given by equation (5). If we write 

AZ = 2.828 + aRPr + flR2Pr2 

+ yR3Pr3 + SR + 0(R2, R2Pr, R4Pr4) 

and 

B,(v) = BAO)(q) + B$)RPr 
+ BCii)R2pr2 + B(iii)R3pr3 

0 0 

+ BciV)R + cl . . . (29) 

and substitute into equation (28) then we can 
show that 

a = -0.750 /3 = 0.065 

6 = 04076 y = O(O*OOl) li 
(30) 

In equation (30) and in the following results 
O(x) means that the numerical value is close to 
the value x. The function BAO’(?) has been 
tabulated in Table 2 and the functions B:)(v) 
and Bzi)(7) are tabulated in Table 3. The func- 
tions Bfi)(q) and B?‘(T) are only significant 
in the fourth decimal place and have, therefore, 
been omitted. 

The non-dimensional temperature B is given 
by equation (13) which requires the value of K0 
given by equation (20). Now 

aBo(rl> 
[ 1 ah, 7=1 = 

- 0.990 - 0.18 RPr 

- 0.01 R2Pr2 + 0.002 R + . . . (31) 

so that 

K. = 1.201 - 0.06 RPr + 0.020 R2Pr2 

+ 0401 R + . . . (32) 

Hence the non-dimensional temperature distri- 
bution is 

Table 3. The functions &P(~) and B,,(‘*‘(~) 
_ 

? 0 0.1 0.2 0.3 0.4 @5 @6 @7 0.8 0.9 1.0 
___ 

BP(~) 0 0.0037 0.0141 0.0292 0.0460 0.0612 0.0710 
BP’(~) 

0.0726 0.0634 
0 -0+003 

0.0423 0 
--oOOll -O+iO18 -0+X)27 -0aO19 -0+006 O+lO13 OX)029 0.0029 0 
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B =: [lo201 -- 0*06 RPr + 0.020 R”Pr’J -j 

4- 0.001 R + . . .] [BF’ I 
/ 

i (33) 

- 0.292 ~~(~1 ( 1 __ :* s) ‘d1-43’Rf’r / 

A“ = 2+828 --- 0.750 RPr 

+ 0.065 EPr” $- OdlO76 R -f- . _ . (34) 

In the second and third eigenfunctions in the 
above equations the effect of suction has not 
been calculated. 

The mean temperature can be obtained from 
equations (23) and (25). Now [8&(~)/i$]~=r 
is given by 

pq __: _. 1434 - 0.39 RPr 
L cq _I ,/==1 

-- o-05 R”Pr’ - O(O,~l ) R 

so that 

co :-_ 0.914 -- 0.04 RPr 

-+ @025 R2Prz - 0{0.~2) R. (35) 

Hence the mean temperature is 

8, := (0.9 14 - 0.04 RPr 

+ 0.025 ~Lprz + . _ .) ( 1 i* ,t]“A’J”‘Rrr 

_+ (0.053) f 1 ._ ;* q?l.iuIipr 

(, 
-Gd~:31 !RlV 

+ 0.015 1 - 
s 4 

where hi is given in equation (34). If we sub- 
stitute the above value for Bm we can obtain the 
Nusselt number from equation (26). In parti- 

cular for 6 sufficiently large the limiting Nussclt 
number is given by 

N&L : 3.77 -1 Rpr + 0.087 R‘LPr” 

-+ 0.010 R + O(O.001) H”Pr” -: . . . (37) 

Values of the limiting Nusselt number have been 
given for various values of RPr in Table 4. In 
Terrill [l] the solution for.f(q) given in equation 
(5) was found to he accurate within the range 
j Rj es: 7 and in the same way expansion (371 
suggests that the limiting Nusselt number will 
be accurate for RPr in the range 1 RprI 3. 
The Nusselt number increases with increasing 
Reynolds number; in particular injection dc- 
creases Nu, whereas suction increases Nu,,. In 
Terrill [l] the skin friction was found to increase 
with R for small suction Reynolds number and 
so it is consistent that the Nusselt number 
increases with R. 
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R&surn&L’&coulement laminaire incompressible dans une conduite bidimensionnelle avec deux 
parois poreuses identiques a CtC discutt auparavant par l’auteur [l, 21. Dans et article, le probleme du 
transport de chaleur avec une variation discontinue de la temperature parietale est resolu. On trouve 
que, pour de petits nombres de Reynolds d’aspiration, le nombre de Nusselt limite Nu, augmente 
lineairement avec le nombre de Reynolds d’aspiration. En particulier, I’injection diminue tandis que 

I’aspiration augmente le nombre de Nusselt. 

Zusammenfassung-Die laminare, inkompressible Stromung in einem zweidimensionalen Kanal mit 
zwei gleich poriisen Wanden ist vor kurzem vom Author diskutiert worden [l, 21. Hier wird das 
Warmeiibergangsproblem fur nicht kontinuierliche Anderung der Wandtemperatur gel&t. Es 
zeigt sich, dass fur kleine Absaug-Reynoldszahlen die Grenz-Nusseltzahl Nu, linear mit der Absaug- 

Reynoldszahl zunimmt. Einblasung vermindert die Nusseltzahl wlhren Absaugung sie erhoht. 

kIEOTaI(MsI-PafEe B pa6oTax [l, 21 aBTOp PaCCMaTpHBaJI JIaMRHapHbIti He0mMaeMbIti 

IIOTOHBAByMePHOM KaHaJIeCfiByMRpaBHOIIOPIlCTbIMHCTeHKaMH. B J(aHHOi%CTaTbepeIIIaeTCR 
3aAaYa TeIInOO6MeHa IIpH EI3MeHeHHH TeMIIepaTypbI CTeHKH CIFaYKOM. HaiQeHo, YTO AJIH 

MaJIbIX YllCeJI Pei'iHOJIbfiCa OTCOCa IIpeReJIbHOe YWCJIO HyCCenbTa kiU, JIliHetiHO yBe.TIHWi- 

BaeTcR c ynemiYeHHeM Ymxa Pennonb~ca orcoca. Hai~eno, yro Bgy~ ynreHbluaeT, a OTCOC 

yBenllYsiBaeT Ymx10 HyccenbTa. 


